

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

A Luminescent Trinuclear Platinum(II) Pt₃C₂ System Having a "Naked" C^oC²⁻ Ligand Swapping amongst Three Unsupported Platinum(II) Moieties

Keith Man-Chung Wong,^[a] Wai Han Lam,^[a] Zhong-Yuan Zhou^[b] and Vivian Wing-Wah Yam*^[a]

 [a] Centre for Carbon-Rich Molecular and Nano-Scale Metal-Based Materials Research Department of Chemistry, and HKU-CAS Joint laboratory on New Materials The University of Hong Kong, Pokfulam Road Hong Kong, P. R. China

> [b] Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong, P. R. China

Synthesis and Characterization

 $[\{Pt('Bu_3-trpy)\}_3(\mu_3-?^1,?^2-C\equiv C-)](PF_6)_4$ (1·PF_6) was obtained as a by-product from the treatment of the dinuclear alkynylplatinum(II) terpyridyl precursor, $[Pt('Bu_3-trpy)(C\equiv C)Pt('Bu_3-trpy)](OTf)_2$, with an excess amount of $[Cu(MeCN)_4]PF_6$ in acetone. After removal of solvent under vacuum, the solid residue was washed with THF and yellowish-orange crystals of $1\cdot PF_6$ were obtained after recrystallization from dichloromethane/*n*-hexane. X-Ray quality crystals can be obtained from slow vapor diffusion of *n*-hexane into a solution of $1\cdot PF_6$ in acetone. Yield: 10 %. Positive ESI-MS: m/z 2250 $[M-PF_6]^+$, 1052 $[M-2(PF_6)]^{2+}$; elemental analysis (%) calcd for $C_{83}H_{105}F_{24}N_9P_4Pt_3\cdot CH_2Cl_2$ (found): C 39.70 (39.67), H 4.21 (4.38), N 4.96 (5.22).

[{Pt('Bu₃-trpy)]₃(μ_3 -?¹,?²-C=C-)](OTf)₄ (1-OTf) was prepared by the reaction of [Pt('Bu₃-trpy)(C=C)Pt('Bu₃-trpy)](OTf)₂ with [Pt('Bu₃-trpy)(MeCN)](OTf)₂ in acetone. After stirring for 12 hours, a clear orange solution was obtained and the solvent was removed under vacuum. Subsequent recrystallization from slow vapor diffusion of *n*-hexane into a solution of 1-OTf in dichloromethane yielded the pure form of 1-OTf as yellowish-orange crystals. Yield: 85 %. ¹H NMR (500 MHz, CD₃COCD₃, 298 K, relative to Me₄Si): *d* = 1.34 (18H, *tert*-butyl H), 1.49 (s, 9H, *tert*-butyl H), 7.63 (dd, 2.0 and 6.0 Hz, 2H, 3- and 3'-protons on terpyridine), 8.74 (d, J = 2.0 Hz, 2H, 5- and 5''-protons on terpyridine), 8.80 (s, 2H, 3'-protons on terpyridine), 9.65 (d, J = 6.0 Hz, 2H, 2- and 2''-protons on terpyridine); ¹³C{¹H} NMR (125.8 MHz, CD₃COCD₃, 298 K, relative to Me₄Si): *d* = 29.2 and 29.4 (primary C on *tert*-butyl group), 36.1 and 37.1 (quaternary C on *tert*-butyl group), 108.9 (C=C), 121.8, 123.7, 126.5 and 154.0 (tertiary C on terpyridine), 154.6, 158.9, 167.4 and 168.6 (quaternary C on terpyridine); ¹⁹⁵Pt{¹H} NMR (107.2 MHz, CD₂Cl₂, 298 K, relative to Na₂PtCl₄ in D₂O): *d* = -2898; positive ESI-MS: m/z 2261 [*M*-OTf]⁺, 1056 [*M*-2OTf]²⁺; Raman: 1895 cm⁻¹ ?(C=C); elemental analysis (%) calcd for C₈₃H₁₀₅F₂₄N₉P₄Pt₃·2CH₂Cl₂ (found): C 41.63 (41.64), H 4.36 (4.29), N 4.86 (4.82).

¹³C enriched [{Pt(^tBu₃-trpy)}₃(μ_3 -?¹,?²-¹³C=¹³C-)](OTf)₄ was prepared according to a procedure similar

to that of $[\{Pt({}^{t}Bu_{3}-trpy)\}_{3}(\mu_{3}-?^{1},?^{2}-{}^{13}C\equiv{}^{13}C-)](OTf)_{4}$ except ${}^{13}C$ enriched $[Pt({}^{t}Bu_{3}-trpy)]({}^{13}C\equiv{}^{13}C)Pt({}^{t}Bu_{3}-trpy)](OTf)_{2}$ was used. Yield: 85 %. ${}^{13}C\{{}^{1}H\}$ NMR (125.8 MHz, CD₃COCD₃, 298 K, relative to Me₄Si): d = 29.2 and 29.4 (primary C on *tert*-butyl group), 36.1 and 37.1 (quaternary C on *tert*-butyl group), 108.9 (C=C, ${}^{195}Pt$ satellite signals with J_{C-Pt} = 574 Hz), 121.8, 123.7, 126.5 and 154.0 (tertiary C on terpyridine), 154.6, 158.9, 167.4 and 168.6 (quaternary C on terpyridine).

X-Ray Structure Determination

Crystal data for $[\{Pt({}^{t}Bu_{3}-trpy)\}_{3}(\mu_{3}-?^{1},?^{2}-C\equiv C-)](PF_{6})_{4}\cdot(CH_{3})_{2}CO: C_{83}H_{105}F_{24}N_{9}P_{4}Pt_{3}\cdot C_{3}H_{6}O, Mr = 2451.99, crystal dimensions 0.38 × 0.14 × 0.06 mm, triclinic, space group P1,$ *a*= 17.926(5),*b*= 18.616(5),*c*= 19.583(4) Å,*a*= 65.881(7),*β*= 77.724(6), ? = 80.102(8) °,*V* $= 5949(3) Å^{3},$ *Z* $= 2, ?_{calcd} = 1.369 gcm⁻³, <math>\mu(Mo_{Ka}) = 3.649 \text{ mm}^{-1}$, *F*(000) = 2416, *T* = 294 K. Final *R* = 0.0822, *wR*2 = 0.1504 with *I* > 2*s*(*I*); GOF = 0.987 for 1220 parameters and a total of 39406 reflections, of which 26778 were independent (*R*_{int} = 0.1938); Bruker CCD area diffractometer, Mo_{Ka} radiation (? = 0.71073 Å); collection range 2? = 3.52 - 55.32°; phi and omega scan applied for diffraction measurement; 2416 frames taken in four shell.

Computational Details

Calculations were carried out using the Gaussian03 software package.¹ To reduce computational cost, model complexes $[Pt(trpy)_3(\mu_3-\eta^1,\eta^2-C=C-)]^{4+}$ **1'** and $[Pt(trpy)_2(C=C)Pt(trpy)]^{2+}$ **2'** were used to mimic the complexes **1** and **2**, in which the *tert*-butyl groups at the 4-position of the pyridyl groups were replaced by hydrogen atoms. Geometry optimizations of **1'** (with C_2 symmetry), the transition state of the topomerization (with C_2 symmetry) and **2'** (with D_2 symmetry) were performed using density functional theory (DFT) at the hybrid Perdew, Burke, and Ernzerhof functional (PBE1PBE)² level of theory. Vibrational frequencies were calculated for all stationary points to verify that each was a minimum (NIMAG = 0) or a transition state (NIMAG = 1) on the potential energy surface. Based on the groundstate optimized geometries in the gas phase, a nonequilibrium time-dependent (TDDFT) method at the same level was employed to study the nature of the low-lying singlet-singlet and singlet-triplet transitions. For all the calculations, the Stuttgart effective core potentials (ECPs) and the associated basis set were applied to describe Pt,³ while the 6-31G basis set^{4a,b} was used for all other atoms. Polarization functions have been added for the Pt atom ($\zeta_f(Pt)=0.997$),⁵ and the N and C atoms which are directly coordinated to the metal center [$\zeta_d(N)$ and $\zeta_d(C) = 0.8$)].^{4c}

References

- Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- [2] a) M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 1999, 110, 5029; b) M. Ernzerhof, J. P. Perdew,
 K. Burke, Int. J. Quantum Chem. 1997, 64, 285.
- [3] D. Andrae, U. Häussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123.

- [4] a) R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 1971, 54, 724; b) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257; c) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
- [5] A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* **1993**, 208, 111.

Figure S1 Optimized geometry of 1'. Hydrogen atoms have been omitted for clarity.

Table S1 Selected structural parameters of the PBE1PBE optimized geometries in 1' (with the experimental structural parameters of 1 in parentheses). Bond distances and angles are in Å and °, respectively. The atomic numbering is shown in Figure S1.

	1'
Pt(3)–C(1)	2.262 (2.198)
Pt(3)-C(2)	2.262 (2.198)
Pt(1)-C(1)	2.001 (1.953)
Pt(2)-C(2)	2.001 (2.043)
C(1)-C(2)	1.266 (1.249)
$Pt-N^{a}$	2.022 (1.971)
Pt(1)-C(1)-C(2)	159.6 (154.6)
Pt(2)-C(2)-C(1)	159.6 (154.8)
Pt(3)-C(1)-C(2)	73.7 (73.5)
$\phi_{\text{Pt}(1)}{}^{b}$	42.4 (43.5)
$\phi_{Pt(2)}^{b}$	42.4 (43.2)
$\Phi_{Pt(3)}^{b}$	70.0 (68.2)

^{*a*}Average Pt–N distance. ^{*b*}Interplanar angles between the triangular plane [Pt(3), C(1) and C(2) atoms] and [Pt(trpy)] plane.

Table S2TDDFT vertical excitation wavelength (nm) of selected low-lying singlet (S_n) and the first
triplet excited states (T_1) in **1'** and **2'** with the orbitals involved in the dominant excitation
(H = HOMO and L = LUMO)

Complex	Transition	Dominant excitation	vertical excitation wavelength (nm)
1'	$S_0? S_1 (0.016)^a$	H? L $(0.69)^b$	470
	$S_0? T_1 (0.000)^a$	H? L $(0.68)^b$	490
2'	$S_0? S_3 (0.317)^a$	H? $L(0.48)^{b}$	520
		H-1? L+1 $(0.48)^{b}$	
	$S_0? T_1 (0.000)^a$	H? L $(0.51)^{b}$	616
		H-1? L+1 $(0.51)^b$	

^{*a*}Oscillator strengths (*f*). ^{*b*}Transition coefficients.

Table S3Cartesian coordinates for the PBE1PBE optimized structures of 1', the transition state for
the topomerization, and 2' with the calculated electronic energy (Hartree) in parenthesis.

1' (-2657.653077)

1 Pt	0 000000	0 000000	1 848861	64	N	0 00000	0 000000	3 814692	
2 0	0 150406	0.615060	0 222420	6 E	0	1 101200	0 145544	4 453430	
2 C	0.150400	0.015002	-0.322429	05	C	1.101299	0.145544	4.453430	
3 C	-0.150486	-0.615062	-0.322429	66	C	-1.181299	-0.145544	4.453430	
4 Pt	0.762298	2.395200	-1.000140	67	С	1.204750	0.150753	5.848312	
5 Pt	-0.762298	-2.395200	-1.000140	68	С	-1.204750	-0.150753	5.848312	
6 N	1.403817	4.098346	-1.772117	69	С	0.000000	0.000000	6.540744	
7 C	2 272714	4 044772	-2 802810	70	н	2 132087	0 267386	6 394642	
, c	0 057664	E 2E/090	_1 229000	71	ц Ц	-2 122007	-0 267296	6 204642	
	0.957004	5.254009	-1.230909	71	п 	-2.132087	-0.207380	0.334042	
9 0	2./53145	5.232139	-3.355660	12	н	0.000000	0.000000	1.624/22	
10 C	1.409727	6.467922	-1.756933	73	N	-2.006310	-0.214281	2.191963	
11 C	2.314488	6.446428	-2.821384	74	С	-2.991532	-0.299696	1.281362	
12 H	3.451560	5.226110	-4.182648	75	С	-2.322957	-0.272015	3.530657	
13 H	1 073149	7 413642	-1 351845	76	Ċ	-4 328413	-0 451174	1 645146	
14 11	2 677250	7.270100	2 227405	77		2 692100	0.1511/1	0.045953	
14 1	2.0//250	7.379109	-3.23/495	//	п	-2.083190	-0.250060	0.245655	
15 N	1.973914	1.675257	-2.483105	78	C	-3.641530	-0.428608	3.945573	
16 C	2.591207	2.666446	-3.212406	79	С	-4.661053	-0.521090	2.995489	
17 C	2.196338	0.388726	-2.811522	80	Н	-5.089920	-0.513562	0.877756	
18 C	3.442347	2.351957	-4.267477	81	Н	-3.879460	-0.478249	5.000973	
19 C	3 037471	0 022953	-3 859570	82	н	-5 691291	-0 642915	3 309484	
20 17	1 077500	0.022000	2.214015	02	37	3.091291	0.012010	2 101062	
20 H	1.0//500	-0.350973	-2.214915	83	IN	2.006310	0.214281	2.191963	
21 C	3.674279	1.016556	-4.599030	84	С	2.991532	0.299696	1.281362	
22 H	3.921337	3.141178	-4.833405	85	C	2.322957	0.272015	3.530657	
23 Н	3.185148	-1.025368	-4.087536	86	С	4.328413	0.451174	1.645146	
24 н	4 335468	0 763712	-5 419704	87	н	2 683190	0 250060	0 245853	
25 M	-0.250226	2 726155	0 160947	00	C	2 6/1620	0 429609	2 9/5572	
25 N	-0.239230	3.720133	1 140466	00	a	4 661052	0.420000	3.943373	
26 C	-1.14836/	3.452084	1.140466	89	C	4.661053	0.521090	2.995489	
27 C	0.000000	5.041848	-0.141015	90	н	5.089920	0.513562	0.877756	
28 C	-1.812900	4.449852	1.848883	91	Н	3.879460	0.478249	5.000973	
29 Н	-1.314318	2.402511	1.343821	92	н	5.691291	0.642915	3.309484	
30 C	-0.632888	6.076539	0.540889						
31 C	_1 551538	5 784303	1 549261						
22 11	2 524765	4 100405	2 610022						
32 H	-2.524/05	4.100425	2.019023						
33 H	-0.419117	7.106854	0.285444						
34 н	-2.052325	6.584358	2.081834						
35 N	-1.973914	-1.675257	-2.483105						
36 C	-2.591207	-2.666446	-3.212406						
37 C	-2.196338	-0.388726	-2.811522						
38 C	-3 442347	-2 351957	-4 267477						
20 0	2 027/71	0.000050	2 950570						
39 0	-3.03/4/1	-0.022955	-3.859570						
40 H	-1.677566	0.350973	-2.214915						
41 C	-3.674279	-1.016556	-4.599030						
42 H	-3.921337	-3.141178	-4.833405						
43 H	-3.185148	1.025368	-4.087536						
44 H	-4.335468	-0.763712	-5.419704						
45 N	-1 403817	-4 098346	-1 772117	1					
46 0	_0 957664	-5 25/000	_1 220000						
47 0	-0.23/004	-3.234009	-1.230909	1					
4/ C	-2.272714	-4.044772	-7.805810	1					
48 C	-1.409727	-6.467922	-1.756933						
49 C	-2.753145	-5.232139	-3.355660	1					
50 C	-2.314488	-6.446428	-2.821384						
51 H	-1.073149	-7,413642	-1.351845	1					
52 H	-3 451560	-5 226110	-4 182648						
E2 11	2 677250	7 270100	2 227405						
53 H	-2.0//258	-7.3/9109	-3.23/495						
54 N	0.259236	-3.726155	0.169847						
55 C	1.148367	-3.452084	1.140466						
56 C	0.00000	-5.041848	-0.141015						
57 C	1.812900	-4.449852	1.848883						
58 H	1.314318	-2.402511	1.343821	1					
59 0	0 633000	-6 076520	0 5/0000	1					
59 0	0.032088	-0.0/0539	0.540069						
60 C	1.551538	-5./84303	1.549261						
61 H	2.524765	-4.180425	2.619023						
62 H	0.419117	-7.106854	0.285444	1					
63 H	2.052325	-6.584358	2.081834	1					

The transition state for the topomerization (-2657.645301)

1 Pt	0.000000	0.000000	2.854224	75	С	-3.282210	-1.975891	-3.346369	
2 0	0 000000	0 000000	0 011240	76	C	-2 274549	-2 924207	-2 264202	
2 C	0.000000	0.000000	0.911349	70	C	-2.2/4540	-3.834307	-2.204203	
3 C	0.000000	0.000000	-0.361310	77	С	-4.084292	-2.823781	-4.111273	
4 D+	1 273849	1 282007	-1 417923	78	C	-3 054770	-4 721434	-3 006287	
4 PC	1.2/3049	1.282007	-1.41/923	70	C	-3.054770	-4.721434	-3.000287	
5 Pt	-1.273849	-1.282007	-1.417923	79	С	-3.962294	-4.203969	-3.934144	
6 N	0 000000	0 000000	1 020277	00	U	_1 700020	-2 120220	-1 921667	
0 11	0.000000	0.000000	4.0302//	00	п	-4./09939	-2.430220	-4.031007	
7 C	1.159727	0.258493	5.476854	81	H	-2.966677	-5.792427	-2.875547	
0 0	1 1 5 0 7 0 7	0 050400	F 47C0F4	0.0		4 575706	4 070146	4 500441	
8 C	-1.159/2/	-0.258493	5.4/0854	82	н	-4.5/5/80	-4.8/8140	-4.520441	
9 C	1.184720	0.265821	6.871526	83	Ν	-0.630683	-3.079832	-0.673006	
10 0	1 104700	0 065001	C 07150C	0.4	~	0 005116	2 200025	0 000014	
10 C	-1.184/20	-0.265821	0.8/1520	84	C	0.295116	-3.298925	0.280314	
11 C	0 000000	0 000000	7 563791	85	C	-1 267847	-4 160455	-1 241062	
10	0.000000	0.000000	7.303791	0.0	~	1.207017	11200155	2.212002	
12 H	2.096351	0.470834	7.418022	86	C	0.635274	-4.579670	0.710096	
13 H	-2.096351	-0.470834	7.418022	87	н	0.759030	-2.416533	0.701748	
14 17	2.090331	0.000000	0.648608	0.0	~	0.05050	5 160001	0.016010	
14 H	0.000000	0.000000	8.64/63/	88	C	-0.962659	-5.460024	-0.846840	
15 N	-1 963527	-0 437035	3 211941	89	C	0 00000	-5 679659	0 139113	
10 11	1,000000	0.157055	0.011011			0.000000			
16 C	-2.931720	-0.639001	2.298948	90	н	1.386673	-4.704570	1.479964	
17 C	-2 279017	-0 501882	4 550750	91	н	-1 472031	-6 300136	-1 302300	
10 0	2.2/901/	0.501002	1.550750	21		1.1/2051	0.500150	1.502500	
18 C	-4.24/653	-0.912602	2.662424	92	н	0.243312	-6.688646	0.451313	
19 H	-2 631015	-0 579179	1 259899						
10 G	2.002020	0.079279	1.000005						
20 C	-3.5/9585	-0.//3361	4.963045						
21 C	-4 580350	-0 981128	4 012960						
21 0	1.500550	0.901120	1.012000						
22 H	-4.995180	-1.066267	1.894313						
23 H	-3 816635	-0 820621	6 018572						
2.5 11	5.010055	0.020021	0.010572						
24 H	-5.596493	-1.190069	4.326586						
25 N	1 963527	0 437035	3 211041						
2.5 1	1.000027	0.457055	5.211941						
26 C	2.931720	0.639001	2.298948						
27 0	2 270017	0 501000	4 550750						
27 C	2.2/901/	0.301882	4.550750						
28 C	4.247653	0.912602	2.662424						
29 H	2 631015	0 579179	1 259899						
20 11	2.051015	0.5/91/9	1.239099						
30 C	3.579585	0.773361	4.963045						
21 0	1 590250	0 001120	1 012960						
51 C	4.560350	0.901120	4.012960						
32 H	4.995180	1.066267	1.894313						
22 U	2 916625	0 920621	6 019572						
35 n	3.810035	0.020021	0.010572						
34 H	5.596493	1.190069	4.326586						
2 5 17	2 414217	2 506225	2 450050						
22 IN	2.41421/	2.506225	-2.459959						
36 C	2.274548	3.834307	-2.264203						
27 0	2 202210	1 075001	2 246260						
3/ 0	3.282210	1.9/5891	-3.346369						
38 C	3 054770	4 721434	-3 006287						
00 0		11/02101							
39 C	4.084292	2.823781	-4.111273						
40 C	3 962294	4 203969	-3 934144						
10 0	0.000000	1.203303	0.00000						
41 H	2.966677	5.792427	-2.875547						
42 H	4 789939	2 430228	-4 831667						
12 11	1.705555	2.150220	1.051007						
43 H	4.575786	4.878146	-4.520441						
44 N	2 350179	-0 076506	-2 503325						
11 11	2.330173	0.070300	2.303323						
45 C	3.251829	0.504879	-3.365523						
16 0	2 276210	-1 419044	-2 452254						
40 C	2.2/0210	-1.418044	-2.452254						
47 C	4.071067	-0.272463	-4.178390						
48 C	3 077089	-2 241906	-3 239646						
10 0	5.077009	2.211/00	3.232010						
49 H	1.546222	-1.824732	-1.767355						
50 C	3 988080	-1 664030	-4 119652						
50 0		T.001000	1.11/032						
51 H	4.773906	U.199679	-4.853400						
52 H	2,982965	-3.317695	-3.160098						
50	4 600505	0.055645	4 848405						
53 H	4.623570	-2.277642	-4.747497						
54 N	0.630683	3.079832	-0.673006						
	0.005116	2 20222	0.000014						
55 C	-0.295116	3.298925	0.280314						
56 C	1.267847	4,160455	-1.241062						
50 5	1.207017	1.100100	2.211002						
57 C	-0.635274	4.579670	0.710096						
58 H	-0 759030	2 416533	0 701748						
50 11	0.,55050	2.110000	0						
59 C	0.962659	5.460024	-0.846840						
60 C	0 000000	5 679659	0 139113						
00 C	0.000000		0.100110						
61 H	-1.386673	4.704570	1.479964						
62 H	1 472031	6 300136	-1 302300						
52 II	1.1/2001	5.500±50	1.302300						
63 H	-0.243312	6.688646	0.451313						
64 N	-2 350170	0 076506	-2 503325						
NI PO	-2.3501/9	0.070500	2.000020						
65 C	-3.251829	-0.504879	-3.365523						
66 C	-2 276210	1 418044	-2 452254						
00 0	2.2/0210	1.110014							
67 C	-4.071067	0.272463	-4.178390						
68 C	-3 077080	2 241006	-3 239646						
00 C	5.011009	2.241700	5.252040						
69 H	-1.546222	1.824732	-1.767355						
70 0	-3 000000	1 664020	-4 119652						
10 C	-3.200009	1.004038							
71 H	-4.773906	-0.199679	-4.853400						
72 ¹¹	-2 982965	3 317605	-3 160098						
/2 n	2.902903	3.31/095	3.100090						
73 H	-4.623570	2.277642	-4.747497						
74 N	-2 414217	-2 506225	-2 459959						
1 / 1 11	0, 11 T C L /	2.200223							

2' (-1797.456632)

1 C	0.00000	0.000000	7.268156	
2 C	0.00000	1,215025	6.577834	
3 0	0 000000	1 190124	5 183113	
4 N	0.000000	0.000000	4 549566	
4 N	0.000000	1.100100	4.546566	
5 C	0.000000	-1.190124	5.183113	
6 C	0.00000	-1.215025	6.577834	
7 Pt	0.00000	0.000000	2.578221	
8 N	0.00000	1.994824	2,911260	
9 C	0 000000	2 330526	4 246039	
10 0	0.000000	2.550520	4 620475	
10 C	0.000000	3.004905	4.0304/5	
11 C	0.000000	4.670476	3.671299	
12 C	0.00000	4.313573	2.325523	
13 C	0.00000	2.964207	1.980561	
14 C	0.00000	-2.330526	4.246039	
15 N	0.00000	-1.994824	2,911260	
16 C	0 000000	-2 964207	1 980561	
10 0	0.000000	4 212572	1.900901	
17 C	0.000000	-4.3135/3	2.325523	
18 C	0.000000	-4.670476	3.671299	
19 C	0.00000	-3.664985	4.638475	
20 Pt	0.00000	0.000000	-2.578221	
21 N	-1,994824	0.000000	-2.911260	
22 0	-2 330526	0 000000	-4 246039	
22 0	_2 664005	0.000000	_1 620475	
23 C	-3.664985	0.000000	-4.0384/5	
24 C	-4.670476	0.000000	-3.671299	
25 C	-4.313573	0.00000	-2.325523	
26 C	-2.964207	0.000000	-1.980561	
27 C	-1.190124	0.00000	-5.183113	
28 N	0 000000	0 000000	-4 548566	
20 0	1 100124	0.000000	_E 192112	
29 C	1.190124	0.000000	-5.105115	
30 C	1.215025	0.000000	-6.5//834	
31 C	0.000000	0.000000	-7.268156	
32 C	-1.215025	0.000000	-6.577834	
33 C	2.330526	0.000000	-4.246039	
34 N	1,994824	0.00000	-2.911260	
35 C	2 964207	0 000000	-1 980561	
35 0	4 212572	0.000000	2 225522	
30 C	4.313573	0.000000	-2.325525	
37 C	4.670476	0.000000	-3.671299	
38 C	3.664985	0.000000	-4.638475	
39 H	2.621427	0.000000	-0.952712	
40 H	5.064436	0.000000	-1.545676	
41 H	5 712460	0 000000	-3 968280	
42 U	2 001/07	0 000000	-5 690/07	
42 1	3.74148/	0.000000	-3.02042/	
43 H	2.149988	0.000000	-/.123342	
44 H	υ.000000	0.00000	-8.351520	
45 H	-2.149988	0.00000	-7.123342	
46 H	-3.921487	0.00000	-5.690497	
47 H	-5.712460	0.000000	-3.968280	
48 H	-5 064436	0 00000	-1 545676	
10 11	0 000000	2 621/27	0 052712	
12 II	0.000000	2.02142/ E 064426	1 545676	
50 H	0.000000	5.064436	1.5456/6	
51 H	υ.000000	5.712460	3.968280	
52 H	0.00000	3.921487	5.690497	
53 H	0.00000	-2.621427	0.952712	
54 H	0.00000	-5.064436	1.545676	
55 1	0 000000	-5 712460	3 968280	
	0.000000	2 021/07	5.500200 E 600407	
H ac	0.000000	-3.92148/	5.09049/	
57 H	0.00000	2.149988	7.123342	
58 H	0.00000	0.00000	8.351520	
59 H	0.00000	-2.149988	7.123342	
60 H	-2,621427	0.00000	-0.952712	
61 C	0 000000	0 000000	-0 619310	
62 0	0 000000	0 000000	0 619210	
02 C	0.000000	0.000000	0.012210	